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Abstract

Real-world tasks often require real-time performances.
However, in many practical cases, “just in time” responses
are sufficient. This means that a system should be efficient
enough to operate on-line and to be usable in reactive sys-
tems, while being robust enough for the specific task they
are performing.

This paper illustrates a new “just-in-time” technique for
feature-based optical flow computation on a cellular au-
tomata paradigm and, as a case study, its implementation
on a special-purpose architecture for cellular automata.
Feature extraction is performed by means of a simple ge-
ometrical coding based on the local morphology of edges,
which allows its description in terms of the cellular au-
tomata paradigm and reduces its temporal complexity.

The experimental results demonstrated that the algo-
rithm performs well both in controlled and uncontrolled en-
vironments.

1 Introduction

Motion detection and interpretation are important issues
for event perception in artificial vision systems dealing with
complex and dynamic scenes. Since the early years of com-
puter vision, optical flow computation has received signif-
icant attention from researchers, and several methods have
been proposed [4]. Basically such methods can be classi-
fied into two main groups: (i) feature-based approaches, (ii)
gradient-based approaches. In feature-based approaches,
two steps are usually performed: feature extraction and
matching. In the feature extraction step some features, such
as image edges, corners, texels and other structures that are
well localized in two dimensions, are detected in the image.

In the feature matching step, such features are tracked
from frame to frame. The second step requires solving
the so-called “correspondence” problem, in which the same
features detected in the earlier phase must be identified in
a subsequent scene and their displacements which have oc-

curred in the meanwhile must be evaluated (see, for exam-
ple, [3, 15, 12]).

In the gradient-based approach, first proposed in [9], the
algorithms use spatial and temporal partial derivatives to
estimate image flow for every point of the image: knowl-
edge of image motion must be introduced in the form of
constraints to obtain algorithms that are not too computa-
tionally expensive. Other more recent gradient-based algo-
rithms, whose approaches differ from the original work by
Horn and Schunk, are discussed, for example, in [11, 5].

In this paper we describe an algorithm for feature-based
optical flow detection, suitable for robotics applications.
Generally, the two major goals to be achieved in robotic
applications to real tasks are robustness of real-world oper-
ation and limitation of computational complexity [8]. How-
ever, in many practical cases, real-time performances are
not strictly necessary, “just in time” responses being suffi-
cient [2]. Algorithms should be efficient enough to oper-
ate on-line and to be usable in reactive systems, detecting
motion accurately enough for specific tasks [1]. To limit
the computation temporal complexity of motion perception
many techniques exploit the massively parallel nature of
image processing (see, for example [6, 7]). The proposed
algorithm is suitable for just in time applications and can
be employed both in controlled and uncontrolled environ-
ments. Feature extraction is performed by means of a sim-
ple geometrical coding based on the local morphology of
the edges, which allows its description in terms of the cellu-
lar automata (CA) paradigm [13] and reduces its temporal
complexity.

2 The CA-based approach

Uniform cellular automata are discrete dynamical sys-
tem whose behaviour is completely specified in terms of a
single local relation. A cellular automaton can be thought
of as a stylized universe in which space is represented by
a uniform grid of cells, each containing a few bits of data;
time advances in discrete steps and a single rule, that can
be encoded in a look-up table, is applied, at each time step,



to compute the new state for each cell from that of its close
neighbors. Thus, the system’s laws are local and uniform.

The aim of our research is to build a tool that can be in-
cluded in the vision system of autonomous robots operating
in both indoor and outdoor environments. For real-world
applications, an optical flow computation algorithm must
find a good trade-off between the requirements of real-time
operation and good reliability. To reduce temporal com-
plexity, image processing algorithms can exploit their in-
trinsically parallel nature, if they are designed according to
a suitable parallel computation model. The proposed al-
gorithm relies on the cellular automata paradigm, which is
particularly efficient for the implementation of local uni-
form operations, such as those that are usually performed in
most image processing applications.

An ideal optical flow algorithm suitable for CA imple-
mentation should be characterized by the following proper-
ties:

1. it should work on integers;

2. computation should be based on binary operators;

3. image processing should be performed by means of
morphologic operators;

4. if image pre-processing is required, it should satisfy
the above-mentioned requirements.

To reach the goal of low computational complexity, we
chose to analyze only two subsequent frames of the video
sequence received from the camera: the frame acquired at
timet (New-imagein the following) and the frame acquired
at timet��t (Old-imagein the following).

The high-level architecture of the proposed feature-
based algorithm is sketched in Figure 1.

2.1 Feature extraction

In the feature extraction phase, images are first pre-
processed to reduce noise by removing the three least sig-
nificant bits from each pixel. This choice is derived from a
statistical analysis of the camera CCD random noise. After
pre-processing, Robert’s edge extractor operator [14] is ap-
plied, producing a binary image in which pixels that belong
to edges are black (0) while all other parts of the image are
white (1). The choice of this edge extractor was made after
a comparison between different methods applied to the pre-
processed image and was based on practical considerations
to keep complexity low.

Using such low-depth images, it is possible to achieve a
very efficient implementation of the following steps. How-
ever, even after this step, a direct pixel-to-pixel matching
is unreliable. Furthermore, the detected edges may be af-
fected by deformations due to missing points (holes) and
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Figure 1. The architecture of the algorithm.

extra points. To deal with these problems the algorithm
groups similar edge configurations into classes that also in-
clude possible noisy instances of a basic edge shape. A sim-
ple geometrical encoding based on the local morphology
of the edges is used, compressing the geometrical proper-
ties of a3 � 3 pixel window into a 4-bit integer. A sta-
tistical analysis of the population of the3 � 3 pixel edge
shapes in a long sequence of frames has been used to iden-
tify the most frequently occurring shapes. The experiments
have demonstrated that the frequency with which different
shapes appear in the sequence depends on the kind of scene
(indoor, outdoor), on image resolution and on the edge ex-
tractor used. After examining several indoor and outdoor
frame sequences, 16 shapes of size3� 3 pixels were iden-
tified which are probably the most common and may serve
as a fundamental set of edge shapes. The final shape set is
showed in Figure 2, in which on the bottom of each model
the corresponding 4-bit integer code is reported.

Therefore, to encode the binarized frame the following
procedure is adopted: for each pixel, the3�3window (cen-
tered in it) is examined and the bit representing the pixel
value is replaced by the 4-bit code of the corresponding
model. When it is impossible to find an exact match with
a model, the code corresponding to the model for which
the Hamming distance is minimum is assigned to the pixel.
This coding process produces a 4 bit/pixel image where
edges are partially regularized and restored.

After such a morphological coding the frame is ready for
the subsequent matching step.

2.2 Matching

In the matching step, a comparison betweenNew-image
andOld-imageis made, to determine if and how much the



edges extracted have been displaced.
To define the matching problem operatively we can con-

sider, for example, an easy case where, in two consecutive
images, all objects are simply translated with respect to the
observer. In this case, each pointP (x; y) belonging toOld-
imagecorresponds to the pointP (x + �; y + �) belonging
to New-image, where(�; �) are thex andy components of
the translation on the image plane; the matching problem
consists in the detection of the two components(�; �).

In the real case the problem is more complicated be-
cause:

(1) Generally the vectors of components(�; �) are dis-
tributed in several directions and do not have a pre-
dictable magnitude.

(2) Occlusions (occurring when an object hides another
object) and image clipping (occurring when objects
disappear, partially or totally, in the new frame) pre-
vent some points from being matched.

(3) In many cases objects present regularities that make
the association process ambiguous. In such cases, for
each point belonging toOld-imagethere may be two
or more points belonging toNew-imagewhich match.

(4) Noise, as well as optical and perspective distortions,
may alter object appearance over time.

Points 1 and 3 can be tackled successfully by the pro-
posed local algorithm. Also, the effects of noise and of
some small perspective distortions can be limited by the
morphological coding operation, while point 2 requires a
global analysis of the scene, which cannot be made using a
local approach.

The algorithm analyzes the global motion in eight
phases, one for each direction (North, North-East, East,
etc.). In other words, eight variants of one unidirectional
matching detector are used. The basic version requires a
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Figure 2. The 16 models used for the morpho-
logical coding of edges.
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Figure 3. Example of the grid used to detect
translations to the right, and the correspond-
ing cell indices.

comparison between one point belonging toOld-imageand
the fifteen points that are closest to the corresponding pixel
of New-imagein the region of the grid that extends in a pre-
fixed direction. For example, in the detector used to reveal
translations to the right, pixel are compared as showed in
Figure 3. If we consider the generic pixelP (x; y) belong-
ing to Old-image, such a pixel is compared with the fol-
lowing pixels belonging toNew-image(refer to Figure 3):
P (x; y); P (x; y�1); P (x; y+1); P (x+1; y); P (x+1; y�
1); P (x+1; y+1); : : : ; P (x+n; y); P (x+n; y�1); P (x+
n; y + 1).

The following outcomes may occur:

(a) There is only one pixel in the grid that matches.

(b) There are more than one pixel in the grid that match.

(c) No pixel in the grid matches.

The process actually detects the closest match (which, in
a sequential implementation, would mean that the process
is stopped as soon as a candidate is found), so the matching
algorithm treats case (a) and case (b) in the same way. Case
(c) assumes by convention that the displacement is zero. At
the end of the scan the position with respect to the origin
of the closest candidate (the dotted cell in the grid of Fig-
ure 3) corresponds to the displacement to be detected. This
solution assumes implicitly that the correct detection is the
one that corresponds to the smallest displacement, as the
hypothesis is made that object velocity is low with respect
to the rate of the matching analysis.

Eight versions of this matching detector (applied along
different directions) produce eight directional fields which,
if vectorially added, permit the computation of the global
field.

3 A case study

The reference architecture used in our experiments is
the CAM-8 [10], a special architecture for the implemen-



tation of uniform cellular automata. The CAM-8 is an
indefinitely-scalable multi-processor architecture aimed at
the fine-grained modeling of spatially extended systems.
Physically, the CAM-8 is a three-dimensional mesh of mod-
ules operating in lockstep on pipelined data.

In brief, the CAM-8 maps an-dimensional space (n >=
1) onto a grid of evenly-spaced cells. Each cell holds a 16-
bit word which represents the cell statuses, so216 different
cell status are possible. The evolution of the system is com-
puted at discrete time steps: at each time step the state of
each cell is univocally determined by the cell status in the
previous step. The status word may be composed by col-
lecting bits from the cell itself and from any other cell in the
space. The present cell status is used to address a look-up
table (LUT) of size216. The content of the corresponding
LUT location will determine the future cell status.

One processing step consists of a serial scanning of the
whole set of cells according to the uniform CA paradigm
where, in each step, the same operation is performed in the
whole cell space. The time required for a single interaction
Cell - LUT - Cell in which all cells in the grid change status
is the basic time unit to be considered for time complexity
analysis. To underline this property it is namedscanor step.

The CAM-8 model used in this work includes eight base
modules, each of which is a complete system (memory
space, LUT, etc.), which can work in parallel (each module
works on a sub-section of the same universe) or indepen-
dently (each module computes a different operation in its
own space).

The first operation that is performed is the acquisition
of New-imagethrough a direct link between a digital B/W
CCD camera and the cell memory space. A bi-dimensional
memory space is defined and the whole image is transferred
from the camera to the CAM-8 memory in a single “scan”.

The phase of image pre-processing requires one scan and
one LUT. The edge extractor which implements Robert’s
operator requires two scans and two LUTs, while morpho-
logical edge coding requires only one scan and one LUT.

The matching step is more complicated than the previ-
ous one. The eight directional detectors are implemented
one for each of the eight modules of the CAM-8 and are
operated in parallel. A single LUT is used to implement a
step counter (Step Index, a 4-bit word) and a cell register
(Cell Index, a 4-bit word). The counter is initialized at 14
(the number of pixels in the region in which matching takes
place) and goes down to 0 with a rate of one for each scan.

During a single scan a given cell ofOld-imageand the
cell ofNew-image, whose position is encoded in theStep In-
dex, are compared; if they match, theCell Indexis assigned
the value of theStep Index(as shown in Figure 4. Doing
so, when theStep Indexis zero only the last match (for each
cell of Old-image) is recorded, that is the nearest to the grid
origin. This process requires 15 scans and only one LUT.

The result of the matching is stored in the cells using the
Cell Index.
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Figure 4. The cell status in a step of the pixel
matching cycle: a) the description of the cell
status; b) the cell status when the pixel of the
new image matches with the old pixel c) the
cell status after the assignment of Step Index
to Cell Index.

The next step performs the conversion from the grid in-
dex to the two components of the corresponding vectors. In
this step it is possible to perform a number of operations
to enhance algorithm robustness; for example, it is possi-
ble to remove all vectors whose module is below a given
threshold, or select a specific set of vectors, or rescale them
within a selected range. To perform the conversion, one step
and one LUT are needed. This is the last step of the opti-
cal flow detection, and so it also includes theNew-imageto
Old-imagecopy operation.

Finally the optical flow results are processed by the host
for visualization or further processing.

4 Performance evaluation

The preliminary tests were aimed at verifying system
performance in a well-known condition, to make a subse-
quent evaluation of its robustness possible. In these exper-
iments an image sequence was used in which the objects
have specified geometric characteristics with uniform sur-
faces and are observed in conditions of constant brightness.

Several experiments on laboratory image sequences
were performed. Such artificial sequences represent a few
seconds of motion simulation. As an example, we consider
the oblique translation of a little boat from left to right (the
first and the last frames of the sequence are showed in Fig-
ure 5).



Figure 5. First and last frames of a se-
quence in an indoor and controlled envi-
ronment.
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8 th frame

Figure 6. Optical-flow trace computed be-
tween the 7th and 8th frames of the se-
quence of Figure 5 together with the output
of the Robert’s filter applied to the 7th and
8th frames, respectively.
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Figure 7. Optical-flow component popula-
tion for the sequence of Figure 5.

Figure 6 shows the optical flow trace computed between
two adjacent frames (the7th and8th), i.e., the instantaneous
reconstruction of the movement. Figure 7 reports the plot of
the population of optical flow components over the whole
sequence. Such a plot can be used to assess the system sta-
bility over time as regards motion detection, since, in this
example, the motion components are constant.

After the first results obtained on limited and controlled
test beds, the method was applied to uncontrolled and noisy
environments.

As an example, we consider the sequence in which a car
moves from right to left about10m away from the video-
camera. The environment comprises both uniform regions
and other irregularly-shaped areas. The sequence includes
16 frames, of which the first and last are showed in Figure 8.

Figure 8. The first and last frames of an out-
door sequence.
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Figure 9. Optical-flow component popula-
tion for the sequence of Figure 8.

Figure 10. Optical-flow trace computed be-
tween the 14th and 15th frames of the se-
quence of Figure 8.

The plot of the optical-flow components is showed in
Figure 9. In the two adjacent images the car displacement
corresponds to a left shift of about 9-10 pixels. However,
the diagram shows a dominance of vectors of smaller ex-
tension: this is due to the strong presence of noise in the
environment, which causes a high number of false move-
ments to be detected. To reduce this noise we removed those
vectors that were smaller than an empirically-set threshold;
doing so, the actual car movement could be reconstructed as
showed in the detail of the optical flow image computed be-



tween the14th and15th frame of the sequence (Figure 10).

The results achieved show that the optical-flow computa-
tion algorithm, when implemented on a dedicated cellular-
automata architecture such as the CAM-8, is very efficient,
because all operations can be executed without any informa-
tion exchange with the host: that is, the algorithm proposed
is fully cellular. Moreover, it requires very limited memory
resources (only 16 bits per pixel). Its temporal complexity
can be deduced, using the CAM-8 as reference, by adding
up the time slices (steps) required to perform the whole se-
quence of operations. In Table 1, we report the execution
times for a single optical flow detection for different im-
age sizes and number of CAM-8 modules, which can up-
date the 16-bit cells status at a rate of 25 Megacells/s per
module. It is worth noting that the execution time of the
algorithm is almost independent of image size if the num-
ber of CAM-8 modules is sufficient to contain the whole
image. One should also remember that the CAM-8 relies
on late-eighties/early-nineties technology. Therefore, on ar-
chitectures based on more recent technology, performances
could be much better.

image resolution time for time for
(pixel) 1 module (s) 8 modules (s)

256� 256 0.0960 0.0708
512� 512 0.2544 0.0744

Table 1. Algorithm execution time.

5 Concluding remarks

This paper presented an algorithm for feature-based op-
tical flow detection. The proposed algorithm satisfies the
requirements of many practical robot applications. For real-
world robotic applications, an optical flow computation al-
gorithm must find a good trade-off between temporal con-
straints and a satisfactory degree of reliability. The execu-
tion time of the algorithm described in this paper makes it
possible for a robot to produce “just in time” responses to
changes in the environment. Moreover, the experimental
tests gave good performances in terms of motion detection
both in indoor controlled environments and in outdoor noisy
environments.

In this method only two images are analyzed at the same
time; the use of previous results is not required when con-
sidering a sequence of frames. We are investigating the
possibility of correlating the optical flow detections in sub-
sequent frames, which may be useful when solving some
ambiguous situations and enhance algorithm robustness.
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