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Abstract. There has been a growing interest in artificial neural networks (ANNs) based on quantum theoretical
concepts and techniques due to cognitive science and computer science aspects. The so called Quantum Neural
Networks (QNNs) is an exciting area of research in the field of quantum computation and quantum information.
However, a key question about QNN is what such an architecture will look like as an implementation on quantum
hardware. To look for an answer to this question we firstly review some basic concepts in ANNs and emphasize
their inherent non-linearity. Next, we analyze the main algorithms and architecture proposed in this field. The
main conclusion is that, up to now, there is no a complete solution for the implementation of QNNs. We found
partial solution in models that deal with nonlinear effects in quantum computation. The Dissipative Gate (D-Gate)
and the Quantum Dot Neural Network are the focused models in this field. The former is a theoretical one while
the later is a device composed by a quantum dot molecule coupled to its environment and subject to a time-varying
external field. A discretized version of the Feynman path integral formulation for this system can be put into a form
that resembles a classical neural network. Starting from these models, we discuss learning rules in the context of

QNNSs. Besides, we present our proposals in the field of QNNss.

1 Introduction

In the last two decades we observed a growing interest in
Quantum Computation and Quantum Information due to
the possibility to solve efficiently hard problem for con-
ventional computer science paradigms. Quantum computa-
tion and quantum information encompasses processing and
transmission of data stored in quantum states (see [15] and
references therein).

On the other hand, Artificial Neural Networks (ANNS)
is a rapidly expanding area of current research, attracting
people from a wide variety of disciplines, mainly due to its
capabilities for pattern recognition and classification [2].

Simply stated an ANN is a computing system com-
posed by very specialized units called neurons which are
linked by synaptic junctions. Learning is the fundamen-
tal feature of ANNs. Learning occurs when modifications
are made to the coupling properties between neurons, at the
synaptic junction [2].

From this scenario, emerge the field of artificial neural
networks based on quantum theoretical concepts and tech-

niques. They are called Quantum Neural Networks (QNNs).

The first systematic examination of quantum theory
applied to ANNs was done in Menneers PhD thesis [12].
The basic approach is inspired on the multiple universes
view of quantum theory: the neural network is seen as a
physical system whose multiple occurrences (component
networks) are trained according to the set of patterns of in-
terest (see Appendix A). The superposition of the trained
components gives the final QNN.

Several works about QNN have been done since Men-
neer’s thesis. Shafee worked with a quantum neural net-
work with nearest neighbor nodes connected by c-NOT gates
[17]. Altaisky [1] proposed a quantum inspired version of
the perceptron - the basic model for neurons in ANNS.

Associative Memory Networks have been also explored
in quantum context [6, 3, 9]. The Hopfield net is a nice
example. The network can be seen as a physical system
instantiated from a set of physical parameters. The many-
dimensional phase space corresponding may have a set of
local minima. Each one of these critical points is associated
with a particular pattern, which can be said to be “stored”
by the network physical parameters. This is a way of do-
ing pattern recognition. The advantage of using a quantum
Hopfield net is that the number of stable states can be much
larger than the classical counterpart, because of quantum
superposition of states (section 3) and because the connec-
tivity is much more complex [3].

Gupta at al. [8] defined a new model for QNNs by
introducing a nonlinear and irreversible gate (D-Gate). Au-
thors justify the models as a solution for the localization
problem, that is, the reflection of the computational trajec-
tory, causing the computation to turn around. In another
way, D-Gate would be a run-time device (that means, a
gate) sensitive to the probability amplitude.

From the point of view of ANNs most of these works
shares the same limitation: from the actual state-of-the-art
for quantum computers it is not clear the hardware require-
ments to implement such models.



The Quantum Perceptrons proposed by Lewestein [11]
was an attempt at this goal. In this case, differently from
[1] cited above, a unitary operator is used to map inputs to
outputs. During training the unitary operator is developed
to find the correct mapping. Lewestein discussed what a
quantum perceptron can learn in terms of the probability
of a unitary operator existing for a typical problem. How-
ever, he did not specify the internal workings of a quantum
perceptron nor describe how the unitary operator may be
developed, that is, how learning occurs.

From the point of view of ANNs we observe that a key
problem for implementing QNNs is the need of nonlinearity
which is an irreversible operations.

Following this observation, we describe the work of
Behrman at al. [4]. They used discretized Feyman path
integrals and found that the real time evolution of a quantum
dot molecule coupled to the substrate lattice through optical
phonons, and subject to a time-varying external field, can be
interpreted as a neural network.

Starting from this interpretation, we compare this model
with the quantum perceptron of Altaisky [1] and discuss the
learning rules and nonlinearity in the context of QNNs. Be-
sides, we present our proposals to explore the D-Gate and
quantum dot models.

The paper is organized as follows. Section 2 present
some ANNSs concepts. In section 3 we present basic con-
cepts for quantum computation and discuss nonlinearity for
QNNs. The quantum dot molecule model is described in
section 4. We present our analysis and further directions
for our work in section 5. Finally, we present the conclu-
sions and future works (section 6). Appendix A outlines the
basic idea of Menneer’s model.

2 Classical Neural Networks

The first logical neuron was developed by W. S. McCul-
loch and W.A. Pitts in 1943 [2]. It describes the fundamen-
tals functions and structures of a neural cell reporting that
a neuron will fire an impulse only if a threshold value is
exceeded.

¥ = input vector

¥ = output

f= ativation function

R = number of element in input
w = weight input associate

b = threshold

Figure 1: McCulloch-Pitts neuron model.

Figure 1 shows the basic elements of McCulloch-Pitts
model: z is the input vector, w are weights associated to the
input, y is output, R is number of elements in input and f
is the activation function that determine the value in output.

A simple choice for f is the signal function sgn(.). In this
case, if the sum, across all the inputs with its respective
weights exceeds the threshold b the output y is 1 else the
value of y is —1, that is:

R
Yy = sgn(z w;z; — b). (1)

i=1
But the McCulloch-Pitts neuron did not have a mech-
anisms for learning. Based on biological evidences, D.O.
Hebb suggested a rule to adapt the input weights, which is
interpreted as learning rule for the system [2]. This biolog-
ical inspired procedure can be expressed in the following

manner:

new __ ,,old .
wi®? = w® + Aw;;

Aw,- — n(ydesired _ y)-’fz, (2)
where w™*® and w°¢ are adapted weights and initials weights
respectively, n is a real parameter to control the rate of
learning and y?¢*¢? is the desired (know) output. This
learning rule plus the elements of Figure 1 is called the
perceptron model for a neuron.

Then, the learning typically occurs for example through
training, or exposure to a know set of input/output data. The
training algorithm iteratively adjusts the connection weights
{w;} analogous to synapses in biological nervous. These
connection weights store the knowledge necessary to solve
specific problems.

3 Quantum Computation and Nonliearity

In practice, the most useful model for quantum computa-
tion is the Quantum Computational Network also called
Deutsch’s model [8, 16]. The basic information unit in this
model is a qubit [14], which can be considered a superpo-
sition of two independent states | 0) and | 1) , denoted by
| ) = ag | 0) + aq | 1), where ag, a1 are complex num-
bers such that |ap|” + |y > = 1.

A composed system with n qubits is described using
N = 2" independent states obtained through the tensor
product of the Hilbert Spaces associated with the qubits.
Thus, the resulting space has a natural basis that can be de-
noted by:

ij €{0,1}}. 3)

This set can be indexed by | i); ¢=0,1,...,N — 1.
Following the Quantum Mechanics Postulates, the system
state | 1), in any time ¢, can be expanded as a superposition
of the basis states:

{| iOil---in—l);

N-1
> e =1. 4
i=0



Entanglement is another important concept for quan-
tum computation with no classical counterpart. To under-
stand it, a simple example is worthwhile.

Let us suppose that we have a composed system with
two qubits. According to the above explanation, the result-
ing Hilbert Space has N = 22 independent states.

Let the Hilbert Space associated with the first qubit
(indexed by 1) denoted by H; and the Hilbert Space as-
sociated with the second qubit (indexed by 2) denoted by
H,. The computational basis for these spaces are given by:
{] 0)1,| 1)1} and {| 0)2,| 1)2}, respectively. If qubit 1 is
in the state | ¥)1 = a10 | 0)1 + @11 | 1)1 and qubit 2 in
the state | ¥)2 = ago | 0)2 + ao1 | 1)2, then the composed
system is in the state: | 1) =| ¥)1® | ¥)2, explicitly given
by:

|9y =D auaz; | ih®] ) Q)

i,j€{0,1}

Every state that can be represented by a tensor product
| ¥)1® | ¥)2 belongs to the tensor product space H; ® Ho.
Howeyver, there are some states in H; ® H» that can not
be represented in the form | ¥)1® | 1)2. They are called
entangled states. The Bell state (or EPR pair) presented
next is a very known example:

1
| ¥) = 73 (10)1® | 0o+ | 1)1® | 1)2). (6)

Trying to represent this state as a tensor product | 1)1 ® |
Y2, with | ¢)1 € Hy and | ¢) € Ha, produces an incon-
sistent linear system without solution.

Entangled states are fundamental for teleportation [7,
14]. In recent years, there has been tremendous efforts try-
ing to better understand the properties of entanglement, not
only as a fundamental resource for the Nature, but also for
quantum computation and information. In Appendix A, we
describe a quantum neural network model inspired in this
property.

The computation unit in Deutsch’s model consists of
quantum gates which are unitary operators that evolves an
initial state performing the necessary computation to get
the desired result. A quantum computing algorithm can be
summarized in three steps: (1) Prepare the initial state; (2)
A sequence of (universal) quantum gates to evolve the sys-
tem; (3) Quantum measurements.

From quantum mechanics theory, the last stage per-
forms a collapse and only what we know in advance is the
probability distribution associated to the measurement op-
eration. So, it is possible that the result obtained by mea-
suring the system should be post-processed to achieve the
target (quantum factoring (Chapter 6 of [16]) is a nice ex-
ample).

Let us return to the perceptron model of section 2.
Would it be possible to implement a quantum mechanics
device analog to it?

Just as a matter of setting ideas, let’s take the quantum
inspired perceptron model proposed in [1]. In this model a
quantum system with n input qubits | Zo), | 1)y | Zn—1)
is considered and an output is derived by the rule:

n—1
ly) =Y Uj|x;) @)
j=0

where U , F are 2x2 operators acting on the basis {| 0, | 1)}.
In analogy with the classical perceptron, the following learn-
ing rule is proposed:

V] 9]

Uit+1) =U; @) +n(|d)— |y () <z;|  (8)

where | d) is the desired output. It can be shown [1] that
the above rule drives the system into the desired state | d).

From the quantum mechanics point of view, the first
problem of the above system is that the learning rule in ex-
pression (8) is not an unitary operation in general (the same
is true for expression (7)). That is way we call this model
quantum inspired.

Besides, ANNSs need activation functions, which are
scalar and nonlinear function, to be implemented. Non-
linearity effects in quantum computation are discussed by
Gupta at al. [8] when proposing a new gate, a dissipative
one, called D-Gate.

The behavior of the D-Gate is the following: given the
state system:

N-1

|y =Y a;|i), )

=0

let A(]¢)) and A’ (| 7)) respectively denote the probabil-
ity amplitudes before and after the application of the D
operator. Then, if A(|0)) > 6 = A'(]0)) = c and
A’ (] 0)) = 0 otherwise; where ¢ for probability amplitude
denotes some constant used for encoding 1. The parameter
d is a pre-set threshold.

From the point of view of Gupta at al. [8] we could
postulate a quantum neural network constructed from Uni-
tary operators and the D-Gate. In the network representa-
tion, the quantum gates are interconnected by wires indicat-
ing the information flow during the computation (Figure 2).
By convention, the computation proceeds from left to right.

However, a quantum mechanics feasible learning rule
should be designed. This point is not addressed by Gupta at
al. To answer this question we need a more deeply consid-
eration about the D-Gate and its hardware implementation.
This is the starting point of this work.
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Figure 2: Outputs are connected to Gate inputs in the net-
work.

The D-Gate nonlinearity is due to dissipations. Such
irreversible operation can be implemented if full interac-
tions with the environment is taken into account. The be-
havior of a system can also be nonlinear because of the in-
teractions between its degrees of freedom (see sections 5, 6
of [8]).

But, what kind of physical system in quantum mechan-
ics can perform nonlinear operations?

What about learning rules? The expression (8) gives
a rule that adapts operators which evolves the state of the
system. However, in the classical perceptron, the quanti-
ties affected by the learning rule (2) are system parameters!
Quantum mechanics systems have in general a set of pre-
defined parameters. Could be a learning rule that adapt sys-
tem parameters more feasible in practice? Is there such a
rule?

We believe that a possible (may be partial) solution for
these questions is the model stated next.

4 A Quantum Dot Neural Network

In [4] we found a mathematical formulation of a quantum
neural network through a quantum dot molecule coupled to
the substrate lattice through optical phonons, and subject to
a time-varying external field. The nonlinearity is a conse-
quence of the real-time propagation of a quantum system
coupled to its environment. Dissipation is not considered
here, although the general model can incorporate this pos-
sibility [10, 4].

Using discretized Feynman path integrals, authors found

that the real time evolution of the system can be put into a
form which resembles the equations for the virfual neuron
activation levels of an artificial neural network. The time-
line discretization points serve as virtual neurons.

Through the Feynman path integral formulation of quan-

tum mechanics we can write the expression for the time
evolution of the quantum mechanical state of a system as:
(w f 7T)
|9 (24, T)) = Dz (#)] x
($070)

D(2,5)

T
exp %/dr[%mdc—V(m)] | (0,0)).  (10)
0

Expression (10) is equivalent to the following one:

eNnt1zs, T
' (zn+4125,T) m (N—1)/2
lim dridzs...dxy (m) X
N = > (20,0 m
z0,0)
N T. 2
imAt (T —x;
o | 3|5 (B2 - v @] ) 1900
(11)

Here | 9 (9, 0)) is the input state of the quantum sys-
tem attime ¢t = 0 and | ¢ (z¢, T')) is the output state at time
t = T. In this equation, m is the mass, 27/ is Planck’s con-
stant, and V is the potential energy. In the second line, the
paths are discretized: NAt = T, with the number of dis-
cretization points, N — 00.

4.1 Specifying the System

The formulation above is general. A QNN approach comes
out when the system is that of a quantum dot molecule with
five dots arranged as the pips on a playing card. The dots
are close enough to each other that tunneling is possible be-
tween any two neighbors. Two electrons are fed into the
molecule, which then has a doubly-degenerate ground state
(in the absence of environmental potentials). These states
can be thought of as the polarization P of the molecule,
equal to £1, that is, the Pauli matrix operator o,. In Equa-
tion (10) this would be the value z (t).

In addition to adjusting or training V' (z), we can ob-
tain an additional trainable nonlinearity by coupling the
quantum system to its environment. The environment is
modeled by a set of Gaussians, that is, the environment has
a quadratic Hamiltonian, or, equivalently, a normal distri-
bution; if the set is taken to be infinite, any desired influ-
ence including dissipation can be produced. In this model
this would be represented by the coupling between the elec-
tronic state of the dot molecules and the lattice through op-
tical phonons. Physically the coupling would have to be
weak enough to be represented accurately as linear; for
example, GaAs substrate satisfies this, with a (unitless)
electron-phonon coupling parameter of 0.08 << 1.

Instead of taking N — oo like in (11), we take N to
be finite (quasi-continuum). Equation (11) becomes:

| ¢ (0. (NAY),T)) =
T e % S [Ko. (jAL) + € (jAt) 0. (jAD)] |
(o GAD} 7



oz (AD)] | ¢ (02 (0),0)) (12)

where the path integral over possible positions at each time,
x(t), has been written as a finite set of sums over states of
the polarization, o, at each time slice jA¢. Also, at each
time slice the polarization can be either +1 or —1. The po-
tential energy V' comes from a time-varying electric field,
€ (t), and the kinetic energy term, in this two-state basis,
now has the form Ko, (jAt), where o, is the Pauli matrix.
Since o is off-diagonal in the polarization basis, this term
contains the (nonlinear) coupling between the states of the
quantum dot molecule at successive time slices. The size
of this term, given by the parameter K (the tunneling am-
plitude), is determined by the physics of the dot molecule:
how easy it is for the electrons to tunnel from polarization
state +1 to —1. The effect of the optical phonons is sum-
marized by the influence functional I [0, (t)], given by:

. T
1o @) = [[[Dlax @lexp | 7 [ar Y s
k o k

(13)
where

2
A} (1) + Mean (1) 0. (7),

Sk = % Oz% (T ) +
and ay, is the position variable of the k** harmonic oscil-
lator (phonon), my, its mass, wy its frequency, and Ay its
coupling strength to the system. The advantage of a lin-
early coupled harmonic bath is that the path integrals over
the phonons can be performed immediately, giving us the
nonlinear functional:

I[o. ()] = exp Z Z 0. (jAL) x (jAL, j'At) o, (§'At)

(14)
where x (7,7') = x (|7 = 7'|) = x (") is the influence
phase, proportional to the response function of the bath. For
the phonon bath,

2 Bhwy
= h
x (1) ; o cos ( 5 ) X

{cosh (@) cos (wgT) + i sinh (@) sin (wkr)]

(15)
where it was introduced also a (suitably low) temperature,
given by 1/ in units of Boltzmanns constant.

In [4] authors consider the obtained N intermediate
states to be the states of N virtfual quantum neurons, one
at each time slice jAt. The nonlinearity necessary for

neural computation is inherent in the kinetic energy term,
(zj41 — x;), and in the exponential. Each of the N neu-
rons different possible states contributes to the final mea-
sured state; the amount it contributes, can be adjusted by
changing the potential energy, V' (z).

The trainable parameters set can be any of those that
appear above (\y,wy,) or even the values of the electric field
at each time slice j {e (jAt) ;j =0, ..., N}. Combinations
of these sets are also possible to be trained. It is important
to emphasize that any of these parameters can be controlled
physically [4].

4.2 Training the Quantum Network

We now set up a simulation of the quantum neural network.
We specify as inputs the initial (¢ = 0) polarizations of each
of two quantum dot molecules, far enough from each other
spatially that they do not interact directly, but sharing the
same substrate.

The system output (| ¥ (o, (NAt),T))) represents a
combination of the basic states of polarization, say | +) and
| —). To define a training rule we have to define a scalar
function of the system output whose value is thresholded
to decide if the reproduce the desired behavior (a quantum
logic gate, for example).

In [4] the polarization of the first molecule at the final
time is arbitrarily taken. Thus, the probability amplitude for
the first molecules final state to be equal to the | +) state
is computed (give by |< + | ¢ (0 (NAt),T))|?) and the
signal of the following expression considered:

Out = |< + | ¢ (0. (NAt),T))|* — Desired  (16)
if Out = 0 the network is considered to be trained. To

achieve this goal, an Error Function is defined and a gradi-
ent descent algorithm was used for training:

_ 1 2. new __ yold OError
Error = 4Out ;AR =0 = oy (17)
where
OError 1 0<+|v¢) .
v 2Out [ZRe [ o <+ |) (18)

We shall emphasize that it is possible to train purely
quantum gates such as a phase shift, because the network is
quantum mechanical.

5 Discussion

Firstly, let us compare equations (7) and (12). We shall
observe that instead of saying that we have "N quantum



neurons ~ we could say that we have a kind of quantum
perceptron.

Other point to be considered is the training stage. Ba-
sically, the rule given by equation (17) updates the param-
eters of the system, which is much more closer to a neural
network approach than the expression (8).

Despite of these advantages, a doubt about this QNN is
that its neural network approach is virfual in the sense that
it is just a biased interpretation of an approximated model
of the quantum system.

Although this argument may be consistent, we do not
believe that it discards the model because a neural network
should have three basic elements: (1) An operator to com-
pose the signal(s) received (equation (12) in the above model);
(2) A test to decide if the results is the desired one (expres-
sion (16)); (3) A rule to adapt parameters if need (equation
(17)). These relations are not virtual in the sense that the
final result is a system that reproduce the desired behavior
(a gate, for example).

Up to our knowledge, this model is the first one to en-
compass all steps (1)-(3). If compared with the double-slit
experiment (Figure 3), which Narayanan and Menneer [13]
argued that provides the basis for generic quantum neural
networks, we observe that the quantum dot model is much
more complete.

The double-slit experiment is described as follows (Fig-
ure 3). A photon gun sends photos to a double slit appara-
tus.. The behavior of the system can be explained in quan-
tum mechanical terms through the duality wave-particle:
the particle travels as a wave but collapses to a particle
(point) when the detection screen is achieved.

Photon Gun

Slits

Waves (Superposition)

AN

Detection Screen

Figure 3: Double slit experiment. A photon gun send par-
ticles to the double slit aparatus. Photons travel as waves
but collapses to a particle when colliding with the screen
detector.

The proposed idea in [13] is that the input pattern re-
places the photon , input nodes replace the slits, and the
connections between the input nodes and the next layer are
the waves created by the superposition of patterns which
are evolved by unitary operators. The output nodes act as a
detection screen, in which the collapse occurs.

Despite of some isomorphism between the experiment
and ANN:S, neither the step (2) nor the step (3) are clearly
contemplated in this explanation.

In the Appendix A we analyse other aspects of
Narayanan and Menneer ideas.

6 Conclusions

QNNss is a promising area in the field of quantum compu-
tation and quantum information. Several models have been
proposed in the literature but for most of then it was not
clear the hardware requirements to implement such mod-
els.

In this paper we analyze a physical system -Quantum
Dot Molecule - that can be interpreted as an implementation
of a QNN. We compare this model with a quantum inspired
perceptron [1] and analyze it from the neural networks point
of view. We believe that quantum dot molecules are promis-
ing devices for QNNs.

An important question is if the quantum dot system
can be trained to work like a D-Gate as we can incorporate
dissipation effects. Besides, we are interested to analyze
the potential of quantum dot arrays [3], from the point of
view of the above analysis. These are further directions of
our work.
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8 Appendix A - Menneer Quantum Inspired Model

This QNN model can be summarized as follows.

Training: Given a training set of NV patterns, a set of
N homogeneous components is set up which later will form
the component parts of the network. Each training pattern
is channelled into one component, and the set of weights
encompassed by this component is changed to learn this,
and only this, training pattern.

Testing: After training, a method is required for pro-
cessing a new input. This method is based on a superposi-
tion of the trained networks and collapse.

The following example shows how the method works.

Let us take a single-layer neural network with four in-
put units and one output unit (it is equivalent to a perceptron
(section 2)). In this example, we have a set of N = 3 input
patterns given by: 1111, 1010, 0001.

Thus, three component networks (three perceptrons)
are trained: component a for pattern 1111, b for input pat-
tern 1010 and component ¢ for input pattern 0001.

The input units are numbered from 1 to 4 and the
links between the input units and the output unit are
labeled according to the rule Component-Input Unity:
al,bl,cl;a2,b2, c2;etc.

After the component networks have learned their cor-
responding patterns, their weight values form the superpo-
sitional weights in the QNN. For example, in the case of
Figure 4, the link from the input unit 1 in the QNN will
have a quantum weight of the superpositional composition
of the component weights al, b1 and c1.

YWeights to the output
unit from the input unit

Training input to
input unit

| 112 3] 4 1]2]3]4]
CMalal|az | al a4 I I T I I

CMb[bT]| b2 | b3 bt 1 1o |1 |0

lcnefer] 2|3 |4 Jofo]o] 1]

Figure 4: Training inputs and resulting weights for each
component network (CN).

Collapse of the QNN involves to reduce each superpo-
sition of weights to a single weight. However, a special care
is taken to avoid mixing weights of different components.
Now, the idea of entanglement is used: The superposition
of weights are entangled such that collapse occurs to one
set of weights from one component network.

Collapses occurs during test. In this step, the test input
is compared to the training input for each input unit.

For example, if there is an input of 1010:

1 is input to unit 1, giving the superposition lal and 1bl



and Ocl;

0 is input to unit 2, giving 0a2 and 1b2 and 1c2;
1 is input to unit 3, giving 1a3 and 1b3 and Oc3;
0 is input to unit 4, giving 0a4 and 1b4 and Oc4.

The component weight-set that is used to process the
test input is the one with the greatest summed coefficient
(component b).

From the point of view of ANN, the above proposal
has the advantage of avoiding the known Catastrophic For-
getting because interference between the learning patterns
do not occur due to the fact that each training pattern has its
own component.

Recently, Ezhov [6] argues that this approach to quan-
tum neural networks is consistent with the Everett [5] par-
allel universe interpretation of quantum mechanics.

However, from the viewpoint of quantum computa-
tion, we shall say that the above model is only quantum-
inspired because: (1) There is no an explicit superpositional
composition of the component weights; (2) The entangle-
ment stated is really a lookup table (component,training
pattern) instead of a quantum mechanics operation.

To be more specific, let us take the known problem of
finding the period r of a periodic function f : Zy — Z,
where Zy denotes the additive group of integers modulo
N.

In this case, the quantum solution found in the litera-
ture [14] starts from a hardware with two registers (a reg-
ister is a composite system made of a set of qubits) in the
following entangled state:

1 N—1
(0= 7= 2 | 2)® | £ (z)). (19)

Thus, when measuring the value in the second register,
giving, say, a value yg, then the first register ’s state will
collapse to an uniform superposition of all those | z)'s such
that f (z) = yo; that is:

K-1
1
| lIJ)after = \/—? Z | To + kT), (20)
k=0

where zg issuchax and N = Kr.

In this case, expression (19) is an explicit superposi-
tion of states. | ¥) is an entangled state because it can not
be expressed as tensor product (see section 3). The desired
effect in this case is to cause each integer values of x to be
entangled with the corresponding value f (z). Thus, by the
postulates of the quantum mechanics, the collapse occurs
after measuring.

Certainly, it is exactly the desired behavior when link-
ing the component network and the training pattern. How-
ever, it is not clear how to put the algorithm proposed by
Menneer in a quantum mechanical formulation, like expres-
sions (19)-(20).



